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The site-percolation problem on a simple cubic lattice is studied by the 
Monte Carlo method. By combining results for periodic lattices of different 
sizes through the use of finite-size scaling theory we obtain good estimates 
forpc (0.3115 + 0.0005),/3 (0.41 4- 0.01), 7 (1.6 4- 0.I), and v (0.8 + 0.1). 
These results are consistent with other studies. The shape of the clusters is 
also studied. The average "surface area"  for clusters of size k is found to 
be close to its maximal value for the low-concentration region as well as 
for the critical region. The percentage of particles in clusters of different 
sizes k is found to have an exponential tail for large values of k for p < pc. 
For p > Pc there is too much scatter in the data to draw firm conclusions 
about the size distribution. 

KEY WORDS: Site percolat ion; Monte Carlo method;  percolation 
threshold ; critical exponents ; finite-size scaling. 

1. I N T R O D U C T I O N  

P e r c o l a t i o n  processes ,  first d iscussed  by B r o a d b e n t  and  H a m m e r s l e y ,  (1l occu r  

in d iverse  phys ica l  sys tems (for  recen t  rev iews  see Refs .  2 and  3). C o n s i d e r  a 

d i s o r d e r e d  b ina ry  a l loy  in wh ich  each  site o f  a la t t ice  can  be  occup i ed  by an  A 

or  a B par t i c le  i n d e p e n d e n t l y  wi th  p robab i l i t i e s  p and  1 - p ,  respect ive ly .  

T h e  p r o b a b i l i t y  P(p)  t ha t  a g iven  site (in the  infini te  lat t ice)  is pa r t  o f  a 
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connected cluster of A-type particles of infinite size is nonzero only if p is 
greater than a critical concentration Pc, the percolation threshold for the 
site-percolation process. A cluster of size k is defined as a group of k A-type 
particles connected by nearest neighbor bonds and not connected to other A 
particles. It is also possible to consider processes where the bonds are chosen 
at random to be in two different states, the so-called bond-percolation 
problem, but we shall not discuss that here. 

The percolation phenomenon has been studied in detail for the Bethe 
lattice (infinite Cayley tree) by Fisher and Essam. (~ More recently other 
authors (5~ have extended this method to interacting systems. Fisher and Essam 
showed that the percolation threshold in this case is given by Pc = l/e, where 
e is the branching ratio of the lattice. They also showed that as p approaches 
Pc from above, P(p) goes to zero linearly. The mean square cluster size S(p) 
was found to have a simple pole at Pc. Numerical estimates of pc have also 
been obtained for a number of common lattices by series expansion (6-9~ and 
Monte Carlo calculations. (1~ 

Recent interest in the percolation problem (16-2a~ has been stimulated 
partly by Fortuin and Kasteleyn's observation that this problem can be 
related to the critical behavior of the one-component Ashkin-Teller-Potts 
model. In particular the behavior of P(p) and S(p) near Pc, written in the 
form P ( p ) ~  .r e and S ( p ) ~  1~-[-', where ~ = P/Pc - 1, makes /3 and 7 
correspond to the critical exponents usually associated with the spontaneous 
magnetization and susceptibility, respectively. Harris et al. (17~ and Young and 
Stichombe (t9~ carried out computations of critical exponents using the 
renormalization group technique, while Kirkpatrick (2~ obtained Monte 
Carlo estimates for the exponents/3 and 7 for hypercubical lattices of different 
dimensionalities (2-6). From the work of the latter author it is found that the 
Bethe lattice results are in good agreement with those of the hypercubical 
lattice of dimensionality six. 

Our interest in this problem stems from our investigations, by means of 
computer simulations, of the time evolution of a model binary alloy (A-B) 
system which is quenched (cooled suddenly) from a high temperature to a 
low temperature. (24'25~ At very high temperatures A and B atoms are ran- 
domly distributed over different lattice sites, while at low temperatures 
(T < To) the equilibrium state of the system is (for suitable interactions and 
concentrations) one of segregation into two phases. The study of clusters in 
the high-temperature regime, e.g., in the random system corresponding to 
T =  oo, is therefore of importance for understanding the coarsening (segrega- 
tion into phases) occurring by means of nucleation of droplets or other 
processes after the system is quenched and particles on nearest neighbor 
sites are permitted to exchange positions according to a certain transition 
probability. 
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We are particularly interested in the shape and distribution of  clusters in 
the random system at various concentrations of  A particles to see the extent 
to which these are modified after the quench. In particular we wish to under- 
stand the relationship Of any) between the (more compact) clusters at lower 
temperatures and physical "droplets ."  These questions are of course of 
interest also in Fisher's "droplet  model"  used for investigating critical 
exponents and other phase transition phenomena. (26-2a) We have therefore 
analyzed the average "surface area"  (number of  broken bonds) g~ of clusters 
of size k as well as the size distribution of the clusters. We find, as expected, 
that ~7~ ~ Ak (A ~ 3.7) at all values o f p  studied, i.e., the clusters, even the 
large ones, are very loose or "ramified."(~7) The size distribution appears to 
behave exponentially in k for p < p~. 

2. E S T I M A T I O N  OF P E R C O L A T I O N  P A R A M E T E R S  

Let A be a cubical lattice with periodic boundary conditions containing 
N = L 3 sites. The computer simulation consists in choosing, at random, NA 
sites in A and placing A-type particles (or just particles) there. We identify 
NA/N with p, the probability that a site chosen at random is occupied in the 
"grand canonical" or independent site problem. (We do not expect this 
difference from the independent site problem to be of importance for our 
considerations.) Let us call AA c A the set of  sites chosen; the sites not 
occupied by the A particles A - AA = AB are occupied by the B particles 
(or are just vacant). The set AA will consist of a union of clusters C~. Each 
cluster C, will be characterized by k, the number of  sites in the cluster, and s, 
the surface area, which is defined as the number of A-B bonds incident on 
Ck~, i.e., we count all the bonds emanating from all r, ~ Ck~ that are not A-A 
bonds. This definition of s is different and always greater than or equalto b, 
the number of B sites (empty sites), which form the perimeter of  c lustery 7,28) 
Our definition corresponds, for nearest neighbor interactions, to the (suitably 
normalized) energy of the cluster Ck~. Let n~ be the number of clusters having 
the same value of k and s present in the system. We have programmed the 
computer to list n~, the total number of  clusters of size k (n~ = ~ nk~), and 
s~, the total surface area of all the clusters of size k (sk = ~ nk~s). 

We note here that the probability that a given occupied site in A belongs 
to a cluster of size k with surface area s is given by 

P(k, s:p) = knkJpN ( 1 )  

since there are altogether knk~ lattice sites in such clusters. Similarly, 

P(k:p) = P(k, = kn /pN ( 2 )  
8 
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We also have 

P(k, s:p) = p~-i  ~ M(k ,  s, b)(1 - p)b (3) 
b 

where M(k,  P, b) is a geometrical factor equal to the number of  clusters 
containing the given site of size k, surface area s, and border (neighboring 
sites occupied by B particles) b. Clearly, for all k 

s/2d <~ b <<. s, Klk  2/a <<. s~ <~ K2k (4) 

The factor M(k,  s, b) is, for fixed arguments, independent of L, the size 
of  the lattice, for sufficiently large L. There is thus no problem, in principle, 
in determining any quantities relating to clusters of  fixed size from Monte 
Carlo computations on sufficiently large systems. The same is, however, not 
true for percolation properties. These are, in an intrinsic way, a property of  
the infinite system and their extraction from computations on finite systems 
requires some care. We shall define the "percolat ion probabil i ty" PL(P) for a 
lattice of  size L a as the ratio of the number of  particles present in the largest 
cluster to the total number of sites in the lattice. (z~ We expect that PL(p) 
--->L-. = P(P) whenever (as is usually assumed) there is only one infinite cluster 
present. Our result for P(p)  for L = 50, averaged over ten different random 
configurations, is shown in Fig. 1. The recent results of Kirkpatrick (2x~ for a 
much larger lattice (L -- 144) are also shown in the figure. We note that 
because of the finite size of  the system, PL(p) is nonzero even if p < Pc- The 
question as to how a sharp transition grows out of  a smoothed-out transition 
of a finite-sized system as the size of  the system grows larger and larger (and 
eventually becomes infinite) has received a great deal of  attention in ordinary 
critical phenomena. Adopting Fisher's "finite-size scaling theory ''(29> to the 
problem of site percolation, we assume ~ that the behavior of  PL(P) near the 
percolation threshold can be described in the form 

PL(P) ~ L-~JvXl('rLXIV) (5) 

where r = (p - Pc)/Pc, v is the correlation length exponent [~(p) ~ z-v], and 
X~ is a scaling function. 

We have plotted LB/~PL(p) against rL 1/~ for various values of  Pc,/3, and 
v, for L = 30, 40, 50, 80, 100, to look for a set of  values of  pc,/3, and v for 
which the results for the different lattices fall on one and the same curve, 
which gives the form of the scaling function X~. The range of Pc and the 

�9 critical exponents for which the finite-size scaling theory holds approximately 
(as discerned by the eye) are shown in Table I. As can be seen from Table I, 
our results are in good agreement with those of  other authors. The plots were 

5 The same assumption was made by Levinshtein et al. (1~ Their method of obtaining po 
and the critical exponents, however, is different from ours. 
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PERCOLATION PROBABILITY FOR A SIMPLE CUBIC LATTICE I ~ 
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Fig. 1. Percolat ion probabi l i ty  PL(p) for  a s imple  cubic  lattice o f  size L 3 for  L = 50 ( x ). 
The corresponding  results o f  Kirkpatr ick  (21) for  L = 144 are also s h o w n  (O) .  

Table I. Crit ical Exponents for  Percolat ion a 

Other authors  

Present result  Monte  Carlo Series 

Pc 0.3115 + 0.0005 0.312 _-_ 0.001 (2I) 0.307 _+ 0.01 (6-9) 
/3 0.41 + 0.01 0.39 ___ 0.02 (21) 

0.35 + 0.05 (15) 
y 1.6 __+ 0.1 1.80 + 0.05 C21) 

1.69 + 0.03 (1~) 
v 0.8 + 0.1 0.9 _+ 0.05 ~ )  

i 

a Percolat ion threshold  and critical exponents  for  site perco lat ion  
on  a s imple  cubic lattice as obtained by the M o n t e  Carlo method .  
Results  o f  previous  studies are also s h o w n .  
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Fig. 2. Test for finite-size scaling for PL(p). The results for L = 40 are taken from Dean 

and Bird. r 

found to be very sensitive to Pc, which enables us to prescribe a rather narrow 
range for Pc. A typical plot is shown in Fig. 2. 

The mean square cluster size S(p),  

S(p) = ( ~  k2n~)/(~ knk) = (~. k2nk)/pN (6) 

is expected to diverge atpc with an exponent 7. We have studied S(p) only for 
P < Pc. For  p > Pc the statistics are poor  because one has to take out  the 
largest cluster f rom the sums in (2). We assume that  SL(p) has the form 

SL(p) ~ L~X~(~L l~v) (7) 

where I(2 is another scaling function. Following exactly the same procedure 
as that  for PL(P), we find that the finite-size scaling theory holds for a rather 
narrow range of  7, while Pc and v are consistent with those obtained f rom our  
study of  the percolation probability. Our  estimate for 7 is shown in the third 
row in Table I. I t  should be noted that  the Josephson scaling relation 
dv = 2/3 + 7 holds approximately for our range of  values of/3,  7, and v. 
The prediction o f  Harris et al. (iv) for d = 3 is, however, not  consistent with 
our results, which is not  so surprising, considering the rather large value o f  
their expansion parameter,  6 - d = 3, for this case. 
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3. S H A P E  OF  C L U S T E R S  

The shape of the large clusters that arise in the percolation problem has 
been studied by several authors. (22'2a'a~ The degree of  compactness of  
typical clusters appearing in the system, especially at finite temperatures, is of 
both physical and mathematical interest. (26'32) A measure of this compactness 
may be obtained by considering the behavior of  ~k, equal to the average value 
of s over all clusters of size k. 

In order to find the asymptotic behavior of gk, we grouped the clusters 
in bands of gradually increasing width. The average values of g~, ,~, and tT~ 
for the ith band are then defined (other definitions are also possible) as follows: 

//'i = (Ek~h nk) ' s' = (Ek~t, nk)'  17, = k ~ x  - k~ln (8) 

where the set 1~ is given by/~ = {k [ k~in ~< k ~< k~x}. We then plotted g/~ 
against 1//~ for different values of p, disregarding, however, the largest cluster 
for p /> Pc. We find that for all values o fp  we have studied, p <~ 0.35, g//~ can 
be very well approximated by the linear relation gk/12 = A + B/k.  The value 
of A is very close to 4 (decreasing gradually from about 3.8 for low con- 
centrations to about 3.7 for the critical region), which is the value of  2//~ for 
the Bethe lattice of coordination number six. This shows that our clusters are 
very "ramif ied"  indeed. (z7) (Our value of A is considerably larger than 
Domb's (3a) values of bk/k for k ~ 15. This suggests that typical clusters have 
many bends in them.) A scatter plot of ln(sk/k) vs. In k (excluding the largest 
cluster) obtained from ten independent runs is shown in Fig. 3 for p = 0.322 
(>pc). The horizontal line corresponds to In A for this case. This shows the 
consistency of  our averaging procedure. 

The size distribution of the clusters is also of interest. In order to have a 
reasonable statistic, we have studied the fraction of A-type particles that are 
in clusters of size k, 

Pk = F.~k/NA (9) 

where/~ and tT~ are defined in Eq. (8). This is essentially P ( k : p )  defined in 
Eq. (2). For small values of k, say k ~< 10, p(k :p )  can be obtained (34) from 
Eqs. (2) and (3). For  monomers and dimers, n~ is the same for both the simple 
cubic lattice and the Bethe lattice of coordination number six. We have 
checked that our result for the 50 x 50 x 50 lattice, averaged over ten runs, 
is in very good agreement with the expected values. We find that 
- log(pk)/k --+ a for large value of k, where ~ decreases withp as the concentra- 
tion is increased to about 25~o , although for higher concentrations there are 
considerable fluctuations (scatter) of our data. For concentrations above Pc, 
this scatter is rather large and it is difficult to draw any firm conclusions for 
the behavior of Pk for large values of  k. 
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Fig. 3. Scatter plot of ln(s~/k) vs. In k above the percolation threshold (p = 0.322). 
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